"
],
"text/plain": [
" PassengerId Survived Pclass \\\n",
"0 1 0 3 \n",
"1 2 1 1 \n",
"2 3 1 3 \n",
"3 4 1 1 \n",
"4 5 0 3 \n",
"\n",
" Name Sex Age SibSp \\\n",
"0 Braund, Mr. Owen Harris male 22.0 1 \n",
"1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
"2 Heikkinen, Miss. Laina female 26.0 0 \n",
"3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
"4 Allen, Mr. William Henry male 35.0 0 \n",
"\n",
" Parch Ticket Fare Cabin Embarked \n",
"0 0 A/5 21171 7.2500 NaN S \n",
"1 0 PC 17599 71.2833 C85 C \n",
"2 0 STON/O2. 3101282 7.9250 NaN S \n",
"3 0 113803 53.1000 C123 S \n",
"4 0 373450 8.0500 NaN S "
]
},
"execution_count": 72,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_titanic = pd.read_csv('https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.csv')\n",
"df_titanic.head()"
]
},
{
"cell_type": "code",
"execution_count": 73,
"id": "statewide-spectacular",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEQCAYAAABMXyhMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAApFklEQVR4nO3debzc493/8dfbEaIi/CRpkagTW4tKUomorcLdxtqoFold2/tOcSvqpuW+q9WFoqjWnpZaioi7liAtvdV2U20WkQhSsd2OpWKLnSQ+vz+u6yRjzJnzTTJzzpyc9/PxmMeZ7zXf+c5nljOfub7XpojAzMysiBU6OwAzM+s6nDTMzKwwJw0zMyvMScPMzApz0jAzs8KcNMzMrLAVOzuAeuvbt280Nzd3dhhmZl3K1KlTX46IfuXly33SaG5uZsqUKZ0dhplZlyLpmUrlPj1lZmaFtZs0JO1TpMzMzJZ/RWoaJxYsMzOz5VybbRqSdgV2A/pL+nXJTb2BBfUOzMysqPnz59PS0sJ7773X2aF0OT179mTAgAH06NGj0P7VGsKfB6YAo4CpJeVvAt9d6gjNzGqspaWF1VZbjebmZiR1djhdRkTwyiuv0NLSwsCBAwvdp82kEREPAQ9Jujoi5tcqSDOzWnvvvfecMJaCJPr06cPcuXML36dIl9vhkk4G1sv7C4iIWH+pojQzqwMnjKWzpK9bkYbwS4Czge2ALYFh+a+ZmWWnnHIKm222GYMGDWLIkCH87W9/W+ZjTpw4kdNOO60G0UGvXr1qcpwiNY15EfHHmjxaN9B8wq2dHUJdPX3a7p0dglm7av1/2N7n/q9//Su33HIL06ZNY+WVV+bll1/mgw8+KHTsBQsWsOKKlb+KR40axahRo5Y43noqUtO4U9IvJG0taYvWS90jMzPrIl544QX69u3LyiuvDEDfvn1ZZ511aG5u5uWXXwZgypQpjBgxAoCTTz6ZsWPHMnLkSA4++GC22morZs2ateh4I0aMYOrUqVx22WUceeSRzJs3j+bmZj788EMA3nnnHdZdd13mz5/PE088wS677MLQoUPZfvvteeyxxwB46qmn2Hrrrdlyyy056aSTavZciySNrUinpE4FzsqXM2sWgZlZFzdy5EieffZZNt54Y4444gjuvvvudu8zdepUbrrpJq6++mrGjBnDhAkTgJSAnn/+eYYOHbpo39VXX53BgwcvOu7NN9/MzjvvTI8ePRg7diznnnsuU6dO5cwzz+SII44A4Oijj+bwww9n8uTJrLXWWjV7ru0mjYjYscJlp5pFYGbWxfXq1YupU6cybtw4+vXrx+jRo7nsssuq3mfUqFGsssoqAOy7775cd911AEyYMIF99vn4pBujR4/m2muvBWD8+PGMHj2at956i/vvv5999tmHIUOG8O1vf5sXXngBgPvuu4/99tsPgIMOOqhWT7X9Ng1JnyLVMtaJiF0lbQpsHRGX1CwKM7MurqmpiREjRjBixAg233xzLr/8clZcccVFp5TKBx6uuuqqi67379+fPn36MGPGDK699louvvjijx1/1KhRnHjiibz66qtMnTqVnXbaibfffps11liD6dOnV4ypHj3Kipyeugy4DVgnb/8DOKbmkZiZdVGzZ8/m8ccfX7Q9ffp01ltvPZqbm5k6NY2N/sMf/lD1GGPGjOGMM85g3rx5bL755h+7vVevXgwfPpyjjz6aPfbYg6amJnr37s3AgQMX1VIigoceegiAbbfdlvHjxwNw1VVX1eR5QrGk0TciJgAf5qAWAAtrFoGZWRf31ltvccghh7DpppsyaNAgHnnkEU4++WR+9KMfcfTRR7P99tvT1NRU9Rh7770348ePZ999921zn9GjR/P73/+e0aNHLyq76qqruOSSSxg8eDCbbbYZN910EwC/+tWvOP/889lyyy2ZN29ebZ4ooIiovoN0F/B14M8RsYWkLwCnR8QONYuijoYNGxYduZ6Gu9yadbxHH32UTTbZpLPD6LIqvX6SpkbEsPJ9i4zTOBaYCGwg6T6gH7B3LQI1M7Oupd2kERHTJO0AfIY0hchsz0VlZtY9Fek91USaIr057z9SEhFxdp1jMzOzBlPk9NTNwHvATHJjuJlZo4kIT1q4FNpr1y5XJGkMiIhBSxeOmVn99ezZk1deeYU+ffo4cSyB1vU0evbsWfg+RZLGHyWNjIjblz40M7P6GTBgAC0tLUu0LoQlrSv3FVUkaTwA3CBpBWA+i9fT6L10IZqZ1VaPHj0Krzxny6ZI0jgL2BqYGUt68svMzJYrRUaEPw487IRhZmZFahovAHdJ+iPwfmthrbvcStoF+BXQBPw2Ik4ru30EcBPwVC66PiJ+UssYzMysuiJJ46l8WSlfAGpa68hjQc4Hvgy0AJMlTYyIR8p2vTci9qjlY5uZWXFFksblEfF0aYGkWq8RPhyYExFP5uOPB/YEypOGmZl1oiJtGn+Q1L91Q9IXgUtrHEd/4NmS7ZZcVm5rSQ9J+qOkzdo6mKSxkqZImuIueGZmtVMkaRwG3ChpLUm7Ab8mTStSS5VG45SfApsGrBcRg4FzgRvbOlhEjIuIYRExrF+/frWL0sysmysyYeFkSUcBt5OmE/lyRNT653sLsG7J9gDg+bI43ii5PknSBZL6RsTLNY7FzMza0GbSkHQzH/21/wlgHnBJnrBwVA3jmAxsJGkg8BwwBti/LJ61gH9GREgaTqolvVLDGMzMrB3VahpndlQQEbFA0pGkZWWbgEsjYpakw/LtF5HW8Dhc0gLgXWCMx46YmXWsNpNGRNydu8LeFhFfqncgETEJmFRWdlHJ9fOA8+odh5mZta1qQ3hELATekbR6B8VjZmYNrMg4jfeAmZL+DLzdWhgRR9UtKjMza0hFksat+WJmZt1ckS63l3dEIGZm1viKrBG+EfBzYFNg0fJOEbF+HeMyM7MGVGRE+O+AC4EFwI7AFcCV9QzKzMwaU5GksUpE3AEoIp6JiJOBneoblpmZNaJCvafyUq+P5wF4zwGfrG9YZmbWiIrUNI4hTSFyFDAUOAg4pI4xmZlZgyo0YSFArm0cFRFv1j0qMzNrSO3WNCQNkzQTmEEa5PeQpKH1D83MzBpNkTaNS4EjIuJeAEnbkXpUDapnYGZm1niKtGm82ZowACLifwGfojIz64aqraexRb76d0kXA9eQ1tcYDdxV/9DMzKzRVDs9dVbZ9o9KrnsdCzOzbqjaeho7dmQgZmbW+IrMPbUGcDDQXLq/p0Y3M+t+ivSemgQ8AMwEPqxvOGZm1siKJI2eEXFs3SMxM7OGV6TL7ZWS/k3S2pLWbL3UPTIzM2s4RWoaHwC/AP6Lxb2mAvB6GmZm3UyRpHEssGFEvFzvYMzMrLEVOT01C3in3oGYmVnjK1LTWAhMl3Qn8H5robvcmpl1P0WSxo35YmZm3VyR9TQul7QK8OmImN0BMZmZWYMqsp7GV4DpwJ/y9hBJE+scl5mZNaAiDeEnA8OB1wEiYjowsG4RmZlZwyqSNBZExLyysprPcitpF0mzJc2RdEKV/baUtFDS3rWOwczMqiuSNB6WtD/QJGkjSecC99cyCElNwPnArsCmwH6SNm1jv9OB22r5+GZmVkyRpPEdYDNSd9urgXnAMTWOYzgwJyKejIgPgPHAnm3E8gfgpRo/vpmZFVCk99Q7pClE/quOcfQHni3ZbgG2Kt1BUn9gL2AnYMs6xmJmZm0oUtPoCKpQVt5ucg7w/YhY2O7BpLGSpkiaMnfu3FrEZ2ZmFBvc1xFagHVLtgcAz5ftMwwYLwmgL7CbpAURcWP5wSJiHDAOYNiwYV6a1sysRqrWNCQ1SfpuB8QxGdhI0kBJKwFjgI+MBYmIgRHRHBHNwH8DR1RKGGZmVj9Vk0Y+FVSpQbqmImIBcCSpV9SjwISImCXpMEmH1fvxzcysmCKnp+6TdB5wLfB2a2FETKtlIBExibS0bGnZRW3se2gtH9sMoPmEWzs7hLp6+rTdOzsEWw4USRrb5L8/KSkLUi8mMzPrRop0ud2xIwIxM7PGV2TCwk9JukTSH/P2ppK+Vf/QzMys0RQZp3EZqYF6nbz9D2o/ItzMzLqAIkmjb0RMAD6ERT2d2h1gZ2Zmy58iSeNtSX3II7QlfYE0/5SZmXUzRXpPHUsaaLeBpPuAfoCnJTcz64aK9J6aJmkH4DOkOaJmR8T8ukdmZmYNp92kIakncASwHekU1b2SLoqI9+odnJmZNZYip6euAN4Ezs3b+wFXAvvUKygzM2tMRZLGZyJicMn2nZIeqldAZmbWuIr0nnow95gCQNJWwH31C8nMzBpVkZrGVsDBkv4vb38aeFTSTCAiYlDdojMzs4ZSJGnsUvcozMysSyjS5faZjgjEzMwaX6OsEW5mZl2Ak4aZmRXmpGFmZoW12aYh6U3yJIWVRETvukRkZrYUvFxvx2gzaUTEagCSfgK8SBoFLuAAYLUOic7MzBpKkdNTO0fEBRHxZkS8EREXAl+vd2BmZtZ4iiSNhZIOkNQkaQVJB+BFmMzMuqUiSWN/YF/gn/myTy4zM7NupsjgvqeBPesfipmZNbp2axqSNpZ0h6SH8/YgST+of2hmZtZoipye+g1wIjAfICJmAGPqGZSZmTWmIknjExHx97KyBfUIxszMGluRpPGypA3IA/0k7Q28UNeozMysIRVJGv8OXAx8VtJzwDHAYbUORNIukmZLmiPphAq37ylphqTpkqZI2q7WMZiZWXVF1tN4JiK+JGlVYIWIeLO9O0haARgMrAO8C8yKiH9W2b8JOB/4MtACTJY0MSIeKdntDmBiRISkQcAE4LMF4jczsxopkjSekvQn4FrgL9V2zKexvg98CXgcmAv0BDaW9A6pxnJ5RHxYdtfhwJyIeDIfZzypm++ipBERb5XsvypV5sUyM7P6KHJ66jPA/5BOUz0l6bwqp4Z+Bvwe2CAido6IAyNi77wk7ChgdeCgCvfrDzxbst2Syz5C0l6SHgNuBb5ZIHYzM6uhdpNGRLwbERMi4mvA54HewN1t7LtfRNwTER+rBUTESxFxTkRcXuGuqnS4Cse4ISI+C3wV+GlbMUsam9s9psydO7et3czMbAkVWk9D0g6SLgCmkU437VvwfhtK+r2kP0jausquLcC6JdsDgOfb2jki7gE2kNS3jdvHRcSwiBjWr1+/IqGamVkB7bZpSHoKmE5qeD4+It6usm/PiHivpOinwI9ItYbrgCFt3HUysJGkgcBzpMGDH5nfStKGwBO5IXwLYCXglfbiNzOz2inSED44It4oeLybJV0REVfm7flAMylptDkzbkQskHQkcBvQBFwaEbMkHZZvv4g0HfvBkuaTemSNrnQazMzM6qfayn3fi4gzgFMkVWpfOKrC3XYBDs+9rU4BjgOOAj5BWrypTRExCZhUVnZRyfXTgdOrHcPMzOqrWk3j0fx3StGDRcRC4DxJVwI/BNYGToqIJ5Y+RDMzaxTVlnu9OV+dEREPFjmYpK2A44EPgFNJp5FOkdQC/DQi5i1jvGZm1omKtGmcLWltUkP2+IiYVWXfi4C9gV7AxRGxLTBG0g6khvSdlzVgMzPrPEXGaewIjCCN7h4naWaV9TQWkhq+P02qbbQe4+6IcMIwM+viCo3TiIgXI+LXpIkKp5PaKyrZH9gN2AY4uNIOkioN5DMzsy6gyMp9m0g6Oa/cdx5wP2nwXSXjgKeBCyNi0bQgklaStJOky4FDlj1sMzPrDEXaNH4HXAOMjIg2R2lnu5DmhLomD9R7nTSCvAm4HfhlRExf6mjNzKxTVU0aecryJyLiV0UOlkeDXwBcIKkH0Bd4NyJeX9ZAzcys81VNGhGxUFIfSStFxAfV9q1w3/l4hT8zs+VKoUWYgPskTQQWzTsVEWfXLSozM2tIRZLG8/myArBafcMxM7NG1m7SiIgfd0QgZmbW+IpMjX4nlRdE2qkuEZmZWcMqcnrquJLrPUlTlC+oTzhmZtbIipyemlpWdJ+kisu9mpnZ8q3I6ak1SzZXAIYCa9UtIjMza1hFTk9NJbVpiHRa6ingW/UMyszMGlOR01MDOyIQMzNrfEUmLNxH0mr5+g8kXS9pi/qHZmZmjabI1OgnRcSbkrYjLaJ0OXBhfcMyM7NGVCRpLMx/dydNeX4TsFL9QjIzs0ZVJGk8J+liYF9gkqSVC97PzMyWM0W+/PcFbgN2yVOcrwkcX8+gzMysMRXpPfUOcH3J9gt4ynMzs27Jp5nMzKwwJw0zMyusyDiN04uUmZnZ8q9ITePLFcp2rXUgZmbW+NpsCJd0OHAEsL6kGSU3rQbcV+/AzMys8VSraVwNfAWYmP+2XoZGxIG1DkTSLpJmS5oj6YQKtx8gaUa+3C9pcK1jMDOz6tqsaUTEPGAesB+ApE+SFmHqJalXRPxfrYKQ1AScTzoV1gJMljQxIh4p2e0pYIeIeE3SrsA4YKtaxWBmZu0r0hD+FUmPk7607waeBv5Y4ziGA3Mi4smI+AAYD+xZukNE3B8Rr+XNB4ABNY7BzMzaUaQh/GfAF4B/5GnS/4Xat2n0B54t2W7JZW35FrVPXGZm1o4iSWN+RLwCrCBphYi4ExhS4zhUoSwq7ijtSEoa32/zYNJYSVMkTZk7d26NQjQzsyIr970uqRdwD3CVpJdIK/jVUguwbsn2AOD58p0kDQJ+C+yaE1lFETGO1ObBsGHDKiYfMzNbckVqGnsC7wLfBf4EPEHqRVVLk4GNJA2UtBIwhtRraxFJnybNgXVQRPyjxo9vZmYFFJmw8O2SzcvrEURELJB0JGk23Sbg0oiYJemwfPtFwA+BPsAFkgAWRMSwesRjZmaVtZs0JH0NOB34JKntQUBERO9aBhIRk4BJZWUXlVz/V+Bfa/mYZma2ZIq0aZwBfCUiHq13MGZm1tiKtGn80wnDzMyg+txTX8tXp0i6FrgReL/19oi4vtL9zMxs+VXt9FRpD6l3gJEl20HJan5mZtY9VJt76hsAkraNiI+MAJe0bb0DMzOzxlOkTePcgmVmZracq9amsTWwDdBP0rElN/UmjaUwM7NuplqbxkpAr7zPaiXlbwB71zMoMzNrTNXaNO4G7pZ0WUQ804ExmZlZg2q3TcMJw8zMWhVpCDczMwOcNMzMbAkUWe71DEm9JfWQdIeklyUd2BHBmZlZYylS0xgZEW8Ae5AWS9oYOL6uUZmZWUMqkjR65L+7AddExKt1jMfMzBpYkanRJ0p6jLR63xGS+gHv1TcsMzNrRFVrGpJWAG4GtgaGRcR80uSFe3ZAbGZm1mCqJo2I+BA4KyJei4iFueztiHixQ6IzM7OGUqRN43ZJX1demNvMzLqvIm0axwKrAgslvUud1gg3M7PG127SiIjV2tvHzMy6hyKD+yTpQEkn5e11JQ2vf2hmZtZoirRpXEDqPbV/3n4LOL9uEZmZWcMq0qaxVURsIelBgIh4TdJKdY7LzMwaUJGaxnxJTUAA5MF9H9Y1KjMza0hFksavgRuAT0o6Bfhf4NS6RmVmZg2pSO+pqyRNBf6F1N32qxHxaN0jMzOzhtNu0pC0JvAScE1JWY88pYiZmXUjRU5PTQPmAv8AHs/Xn5I0TdLQWgUiaRdJsyXNkXRChds/K+mvkt6XdFytHtfMzIorkjT+BOwWEX0jog+wKzABOILUHXeZ5Yb28/OxNwX2k7Rp2W6vAkcBZ9biMc3MbMkVSRrDIuK21o2IuB34YkQ8AKxcoziGA3Mi4smI+AAYT9lMuhHxUkRMBnxazMyskxRJGq9K+r6k9fLle8BruXZQq663/YFnS7ZbcpmZmTWQIkljf2AAcCNwE/DpXNYE7FujOCrNoBtLfTBprKQpkqbMnTt3GcIyM7NSRbrcvgx8p42b59QojhZg3ZLtAcDzS3uwiBgHjAMYNmzYUicfMzP7qCJdbjcGjgOaS/ePiJ1qGMdkYCNJA4HngDEsnuvKzMwaRJG5p64DLgJ+CyysRxARsUDSkcBtpNNel0bELEmH5dsvkrQWMAXoDXwo6Rhg04h4ox4xmZnZxxVJGgsi4sJ6BxIRk4BJZWUXlVx/kXTayszMOkmRhvCbJR0haW1Ja7Ze6h6ZmZk1nCI1jUPy3+NLygJYv/bhmJlZIyvSe2pgRwRiZmaNr8hyr5+Q9ANJ4/L2RpL2qH9oZmbWaIq0afwO+ADYJm+3AD+rW0RmZtawiiSNDSLiDPKcTxHxLpVHcJuZ2XKuSNL4QNIqLF7udQPg/bpGZWZmDalI76kfkaZHX1fSVcC2wKH1DMrMzBpTkd5Tf5Y0DfgC6bTU0Xk+KjMz62aK9J7aFngvIm4F1gD+U9J69Q7MzMwaT5E2jQuBdyQNJg3wewa4oq5RmZlZQyqSNBZERJBW0vt1RPwKWK2+YZmZWSMq0hD+pqQTgQOBL+YV+3rUNywzM2tERWoao0ldbL+VZ5rtD/yirlGZmVlDKlTTAH4VEQvzgkyfBa6pb1hmZtaIitQ07gFWltQfuAP4BnBZPYMyM7PGVCRpKCLeAb4GnBsRewGb1TcsMzNrRIWShqStgQOAW3NZU/1CMjOzRlUkaRwNnAjckNftXh+4s75hmZlZIyoyjcg9pHaN1u0ngaPqGZSZmTWmdpOGpH7A90jtGD1byyNipzrGZWZmDajI6amrgMeAgcCPgaeByXWMyczMGlSRpNEnIi4B5kfE3RHxTdKMt2Zm1s0UGdw3P/99QdLuwPPAgPqFZGZmjapI0viZpNWB/wDOBXoD361rVGZm1pDaTBqSegKHARuS5pu6JCJ27KjAzMys8VRr07gcGAbMBHYFzuqQiMzMrGFVOz21aURsDiDpEuDvHROSmZk1qmo1jdYGcCJiQQfEYmZmDa5a0hgs6Y18eRMY1Hpd0hu1DkTSLpJmS5oj6YQKt0vSr/PtMyRtUesYzMysujZPT0VEh01KmFcDPB/4MtACTJY0MSIeKdltV2CjfNmKtHb5Vh0Vo5mZFRvc1xGGA3Mi4smI+AAYT1qTvNSewBWRPACsIWntjg7UzKw7KzJOoyP0B54t2W7h47WISvv0B14oP5ikscDYvPmWpNm1C7Xh9AVe7qgH0+kd9Ujdgt+7rm15f//Wq1TYKElDFcpiKfZJhRHjgHHLGlRXIGlKRAzr7Dhsyfm969q66/vXKKenWoB1S7YHkKYrWdJ9zMysjholaUwGNpI0UNJKwBhgYtk+E4GDcy+qLwDzIuJjp6bMzKx+GuL0VEQskHQkcBtpKdlL8yqBh+XbLwImAbsBc4B3gG90VrwNpluchltO+b3r2rrl+6eIis0CZmZmH9Mop6fMzKwLcNIwM7PCGqJNw6y7kPQJ0nIDALMj4v3OjMdsSbmm0UVI2lDSthXKt5e0QWfEZMVJ6iHpHFLX8d+Rlh54snWeNUmf78TwrApJW0paq2T7YEk35bnw1uzM2DqDk0bXcQ7wZoXyd/Nt1tjOAnoB60XE0Ij4PLAJsL6kC4HrOzU6q+Zi4AMASV8ETgOuAObRDXtQufdUFyHp4Yj4XBu3zWxd+8Qak6Q5wEZR9g+XJ+t8Gdg1z6lmDUbSQxExOF8/H5gbESfn7ekRMaQTw+twrml0HT2r3LZKh0VhS+vD8oQBEBELSV9CThiNq0lSa/vvvwB/Kbmt27ULO2l0HZMl/Vt5oaRvAVM7IR5bMo9IOri8UNKBwKOdEI8Vdw1wt6SbSKeD74XUzkg6RdWt+PRUFyHpU8ANpHOrrUliGLASsFdEvNhZsVn7JPUntVu8S3r/AtiSVEvcKyKe68TwrB156qK1gdsj4u1ctjHQKyKmdWpwHcxJo4uRtCPQ2rYxKyL+Um1/ayySdgI2I83aPCsi7ujkkMyWiJOGmZkV5jYNMzMrzEnDzMwKc9KwLkvSQknTJT0s6bo8RUfR+w6RtNtSPOY1kmZI+m5Z+cmSnsvxtF7WWILj3iVpqVeBkzRC0i1LuP82JduHVerdZVau2/UxtuXKu60DqyRdBRwGnN3enXKf+yGk3meTij5Ynkpim4iouHYy8MuIOLPo8WqlZAzBkhgBvAXcD4vWrDFrl2satry4F9hQ0pqSbsy1gQckDYJFNYFxkm4nTQHxE2B0rhGMLj2QpJ6SfidppqQHc481gNuBT+b7bF8kKEmH5nhulvSUpCMlHZuP+0DZ3EUHSro/15yG5/sPz2UP5r+fKTnudZJuznGVPuaWef/1JX1F0t/y9v9I+pSkZlKC/W7rc8mvz3H5/kNybDMk3SDp/+XyuySdLunvkv5R9DWw5YuThnV5+Zf2rsBM4MfAgxExCPhPUoJoNRTYMyL2B34IXBsRQyLi2rJD/jtAnpplP+ByST2BUcAT+T73Vgil9Ut4uqQ7S8o/B+wPDAdOAd7Jc0/9FSg9JbRqRGwDHAFcmsseA76Y9/8hcGrJ/lsDh0TETiWvxTbARfl5Pgn8L/CFfP/xwPci4um8zy/beC5XAN/Pr+FM4Eclt60YEcOBY8rKrZvw6SnrylaRND1fvxe4BPgb8HWAiPiLpD6SVs/7TIyIdwscdzvg3HyMxyQ9A2wMvNHO/do6PXVnRLwJvClpHnBzLp8JDCrZ75r8mPdI6p3bRFYjJa2NSAMCe5Ts/+eIeLVkexPSBHojI+L5XDYAuFbS2qSBoE9VewL5tVojIu7ORZcD15Xs0jqx4lSgudqxbPnkmoZ1Ze/mX8pDIuI7EfEBadBcudbBSG8XPG6lYyyL0jUzPizZ/pCP/nArHzQVwE9JSedzwFf46Bxk5c/nBeA9oHSa9XOB83Kt6dtUn8OsiNbYF+Ifnd2Sk4Ytb+4BDoDUQwh4OSIq1RDeJP2Kb+8YGwOfBmbXOtAKRufH3A6YFxHzgNWB1ilGDm3n/q8DuwOn5udO2f0PKdm34vPPj/laSXvFQcDd5ftZ9+WkYcubk4FhkmaQ1j04pI397gQ2rdQQDlxAmtl0JnAtcGjBFfZK2zSm5wbnJfGapPtJ7Q3fymVnAD+XdB/Q1N4BIuKfpBrJ+ZK2Ir0e10m6lzQFe6ubgb3aaNQ/BPhFfg2HkDoNmAGeRsTMzJaAaxpmZlaYk4aZmRXmpGFmZoU5aXQgSatIultpXWgkbSxpkqQ5kh6VNEFpsaVlfZzjJD2WRxY/1DqnkKSnJfVdhuMu0fxG9SZpJUnnSHoiv4a3SPp0jY791TwiuvV13LsWx13GmD4yX1QHP/YX8sjy6fmzenINjrlHHqn+kKRHJH17KY/TLGn/ku1DJZ23rPEtYQz/uYz3P1NprZWG56TRsb4JXB8RC/MI41uBCyNiw4jYBLgQ6LcsDyDpMODLwPDct/+L1GDcgZZufqN6H/tUUrfRjSNiQ+APwE2SlulzLWkwcCZpVPVnSb2RTpc0dFmOWwMjgE5JGqRBfmPzXF+fAyYsy8Ek9SANRPxKRAwmjS25aykP10wacd+ZlilpkMbTnFCLQOouInzpoAtpcrjmfP2bwBV1eIz/AzZo47anSdNsTCONRv5sLl+VNG3FZOBB0pclpHEB15G6Z/6F9KV1D2nZ2UdIXUNXyPvul4/5MHB6yWO+VXJ9b+CyfP0y0uSCdwJnARsAD+QYflJ2v+kVnssngFeA3mXl95JGRC/La3gl8M2ysm8BV+frdwHD8vW+wNP5ehPwi/wcZgDfLrn/8SXlP85lzaT1wX8DzCLNIbVKvu2o/BrPIE3/0Qy8SBpzMR3YHlgPuCPvcwdpPEkT8CTph8IapAGEXyx5bTYkdcO9ND+PJ4GjSuKcBKxT4TV5DfhkDT+nawIvtT7fsts+9rxKPjN7l3+28udmXn5dvkv63F4P/Al4HDij5D4XAlPy6/3jsv+NU0lTu0wBtgBuA54ADsv7jKDC55/UtXthfvyr8r7Hkv4XHgaOae/9zrdPBdaq9XdCrS+dHkB3uZCmcHixZPts4OgC91stfxgrXTatsO9rVY71NPCdfP0I4Lf5+qnAgfn6GsA/SInkUKAFWDPfNoI04nh90pfTn0mJYB1SsupHGiX8F+Cr+T7VksYtQFPevgXYL18/rPR+bTyXQaQ5psrLf9n6T1pWfm0br+HBFfadBgwuKxtMTl60nTTGAj/I11cmffkMBEaSflWL9CVzC6kG2AwsAIbk+0woeR+eB1ZufU/y35OB40piupk09xSkHyE35ut/Ii0puwcpUf1XjuepkuPcn8v6kpJvj3Ze7x+SEscN5JHlFfb5TBuv8fTW51C2/29JieMa0mDKFdp5XpdROWmMAG4pKT+UlAxXJ42AfwZYN9/W+lluyu/joJL/jcNLPkMzSP9P/YCXqn3+K3zOh5J+QK0K9CIliM9Xe7/z9m+Ar9fze6gWF08D0HH6kkbsLpFIcxYNKbi7+PhUFOVK5w76Wr4+EhjVOssp6R+ttW2gfH6jv0eaCA9J15DmaZoP3BURc3P5VaQvxRvbieW6iFiYr28NfDVfv5p0eqiatp5rxVNxEVE+gG9Jj13kFN9IYFBJ+8fqwEa5fCSpFgfpi2QjUqJ9KiKm5/LS+ZxmAFdJupG2X8etWfweXkkaCAipRvFFUsL6OfBvpFHdk0vue2ukAYvvS3oJ+BTpB0JFEfGT/L6OJJ0K2o/0JVq6z2yKf1aJiH+VtDnwJeA40mnVQ6s8ryVxR6TR7Uh6hFR7eRbYV9JY0o+btYFNSa81wMT8dybQKxbPF/aeFq+NUunz/99lj70dcENEvJ33u55UM5xI2+83pAS6zlI81w7lpNFx3uWj8/7MAnZo706SViN9CVSyf0Q80roREW9IelvS+q0f7AoqzR0k0i+cj0yVkUcUl89vVGl+pGpfqKX7l897VHQuqErmAOtJWi3/c7fago//EyPpWtIv4XJnR8QVZWWzSGttzCgp24JUc4D0a7G13aT0OYlUk7ut7LF3Bn4eEReXlTfz0XmpFgKr5Ou7k774RwEnSdqsQuzlWl/re0m1tXVINYTjWXxqpVX547b7XRARTwAXSvoNMFdSn4h4peT5fIZUo6tkRES8XuGYM4GZkq4kTaZ4aJXnteh1lyRS7b0tH3t+kgaSktOWEfGapMv46PtXOidY+Xxhra9Ppc9/uWr/D2293+RYikyo2ancEN5BIuI10tQUrR/Sq4FtJO3euo+kXfIvr9L7vRmLJ+UrvzzCx/2cNIVE73zM3vmXVTW3Ad/J/4hI+nyVfYdLGpgbm0eTpt7+G7CDpL65Z9h+LJ6v6J+SNsn771XluA+QZ6cFxpTeIOmx8p3zr7jLgbNLeqMdTDp9cF+F/Ue38RqWJwxItZwTW6cByX+PIbVXQDqV0dooXtqr6jbg8NzI29o7btVc/k1JvXJ5f0mfbOuFyK/VuhFxJ/A90inDXnx8vqj7WfxaHUB6LyC9H9sAH0bEe6TTQ9+m7R8fpY99h6T+Fcp3b/18kGpJCymrOUfE7Cqf1dfLjtdLi+fHglRDeaad5/U0i1/3PVk842+1ecRK9Sb9UJmXeynuWuA+5Sp9/gHmt77vpOT8VUmfyO//XhR47UkzKT+8FDF1KNc0OtbtpKrr/0TEu5L2AM6RdA7pFM8M4OhlfIwLSV8wkyXNz8c9q537/BQ4B5iRvxieJp0Pr+SvpIa/zcmNghHxoaQTSY3aAiZFxE15/xNI5/CfJf1D9GrjuMcAv5f0H6ReZa2nFvrS9i+3E0lf5LMlrQLMBbaOfIJ4aUXEdEnfB26WtDLpFMKOJTWxM4EJkg4itd+0+m3ed1p+HeeS2nZul7QJ8Nf8vfsWcCDpi7eSJtJrsTrpuf8yIl5XWnDpvyXtCXyH1Fh+qaTj82N9I8f/vqRnSYkY0hdWa0eFNuUvwg2BVyvcfBDwS0nvkH7xH1ByanFpCPiepItJv67fZnEto+LzIp3zv0nS30kN5K011RnAAkkPkdo9Xqv0gBHxkKQHSTXJJ6nw46KAj33+c/k40v/PtIg4INdi/p5v+21EPKgqc5HlhLMhi2uzDctzT3Wg/Av+2Ig4qLNjaTRK63u/GxEhaQypUXzPnFjXj4hft3P/tUgNwBdExLgax3YasBWwc6Tp15dLkj5H6jV2bGfH0ohyzei4iGjrB9WyHHsvYIuIOKnWx6411zQ6UP61caekpmX8lbY8Ggqcl3+hv07qNUNEFBpMGBEvsgSNsEsiIrpG//llFBEPk7qKWsdbkfbPCDQE1zTMzKwwN4SbmVlhThpmZlaYk4aZmRXmpGFmZoU5aZiZWWFOGmZmVtj/ByCzTFLHzFt4AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"df_titanic_grouped = df_titanic.groupby('Embarked')\n",
"\n",
"(df_titanic_grouped.sum() / df_titanic_grouped.count()).plot.bar(\n",
" y='Survived',\n",
" ylabel='Passengers that survived per embarkment\\n(%)',\n",
" xlabel='Port of Embarkation\\n(C = Cherbourg; Q = Queenstown; S = Southampton)'\n",
");"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "beneficial-civilization",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\u001b[0;31mSignature:\u001b[0m\n",
"\u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpathlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mIO\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m~\u001b[0m\u001b[0mAnyStr\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0msep\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m','\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mdelimiter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mheader\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'infer'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mindex_col\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0musecols\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0msqueeze\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mprefix\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mmangle_dupe_cols\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mconverters\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mtrue_values\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mfalse_values\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mskipinitialspace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mskiprows\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mskipfooter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mnrows\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mna_values\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mkeep_default_na\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mna_filter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mskip_blank_lines\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mparse_dates\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0minfer_datetime_format\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mkeep_date_col\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mdate_parser\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mdayfirst\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mcache_dates\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0miterator\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mchunksize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mcompression\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'infer'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mthousands\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mdecimal\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'.'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mlineterminator\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mquotechar\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'\"'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mquoting\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mdoublequote\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mescapechar\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mcomment\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mencoding\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mdialect\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0merror_bad_lines\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mwarn_bad_lines\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mdelim_whitespace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mlow_memory\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mmemory_map\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mfloat_precision\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mDocstring:\u001b[0m\n",
"Read a comma-separated values (csv) file into DataFrame.\n",
"\n",
"Also supports optionally iterating or breaking of the file\n",
"into chunks.\n",
"\n",
"Additional help can be found in the online docs for\n",
"`IO Tools `_.\n",
"\n",
"Parameters\n",
"----------\n",
"filepath_or_buffer : str, path object or file-like object\n",
" Any valid string path is acceptable. The string could be a URL. Valid\n",
" URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is\n",
" expected. A local file could be: file://localhost/path/to/table.csv.\n",
"\n",
" If you want to pass in a path object, pandas accepts any ``os.PathLike``.\n",
"\n",
" By file-like object, we refer to objects with a ``read()`` method, such as\n",
" a file handler (e.g. via builtin ``open`` function) or ``StringIO``.\n",
"sep : str, default ','\n",
" Delimiter to use. If sep is None, the C engine cannot automatically detect\n",
" the separator, but the Python parsing engine can, meaning the latter will\n",
" be used and automatically detect the separator by Python's builtin sniffer\n",
" tool, ``csv.Sniffer``. In addition, separators longer than 1 character and\n",
" different from ``'\\s+'`` will be interpreted as regular expressions and\n",
" will also force the use of the Python parsing engine. Note that regex\n",
" delimiters are prone to ignoring quoted data. Regex example: ``'\\r\\t'``.\n",
"delimiter : str, default ``None``\n",
" Alias for sep.\n",
"header : int, list of int, default 'infer'\n",
" Row number(s) to use as the column names, and the start of the\n",
" data. Default behavior is to infer the column names: if no names\n",
" are passed the behavior is identical to ``header=0`` and column\n",
" names are inferred from the first line of the file, if column\n",
" names are passed explicitly then the behavior is identical to\n",
" ``header=None``. Explicitly pass ``header=0`` to be able to\n",
" replace existing names. The header can be a list of integers that\n",
" specify row locations for a multi-index on the columns\n",
" e.g. [0,1,3]. Intervening rows that are not specified will be\n",
" skipped (e.g. 2 in this example is skipped). Note that this\n",
" parameter ignores commented lines and empty lines if\n",
" ``skip_blank_lines=True``, so ``header=0`` denotes the first line of\n",
" data rather than the first line of the file.\n",
"names : array-like, optional\n",
" List of column names to use. If the file contains a header row,\n",
" then you should explicitly pass ``header=0`` to override the column names.\n",
" Duplicates in this list are not allowed.\n",
"index_col : int, str, sequence of int / str, or False, default ``None``\n",
" Column(s) to use as the row labels of the ``DataFrame``, either given as\n",
" string name or column index. If a sequence of int / str is given, a\n",
" MultiIndex is used.\n",
"\n",
" Note: ``index_col=False`` can be used to force pandas to *not* use the first\n",
" column as the index, e.g. when you have a malformed file with delimiters at\n",
" the end of each line.\n",
"usecols : list-like or callable, optional\n",
" Return a subset of the columns. If list-like, all elements must either\n",
" be positional (i.e. integer indices into the document columns) or strings\n",
" that correspond to column names provided either by the user in `names` or\n",
" inferred from the document header row(s). For example, a valid list-like\n",
" `usecols` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``.\n",
" Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``.\n",
" To instantiate a DataFrame from ``data`` with element order preserved use\n",
" ``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns\n",
" in ``['foo', 'bar']`` order or\n",
" ``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]``\n",
" for ``['bar', 'foo']`` order.\n",
"\n",
" If callable, the callable function will be evaluated against the column\n",
" names, returning names where the callable function evaluates to True. An\n",
" example of a valid callable argument would be ``lambda x: x.upper() in\n",
" ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster\n",
" parsing time and lower memory usage.\n",
"squeeze : bool, default False\n",
" If the parsed data only contains one column then return a Series.\n",
"prefix : str, optional\n",
" Prefix to add to column numbers when no header, e.g. 'X' for X0, X1, ...\n",
"mangle_dupe_cols : bool, default True\n",
" Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than\n",
" 'X'...'X'. Passing in False will cause data to be overwritten if there\n",
" are duplicate names in the columns.\n",
"dtype : Type name or dict of column -> type, optional\n",
" Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32,\n",
" 'c': 'Int64'}\n",
" Use `str` or `object` together with suitable `na_values` settings\n",
" to preserve and not interpret dtype.\n",
" If converters are specified, they will be applied INSTEAD\n",
" of dtype conversion.\n",
"engine : {'c', 'python'}, optional\n",
" Parser engine to use. The C engine is faster while the python engine is\n",
" currently more feature-complete.\n",
"converters : dict, optional\n",
" Dict of functions for converting values in certain columns. Keys can either\n",
" be integers or column labels.\n",
"true_values : list, optional\n",
" Values to consider as True.\n",
"false_values : list, optional\n",
" Values to consider as False.\n",
"skipinitialspace : bool, default False\n",
" Skip spaces after delimiter.\n",
"skiprows : list-like, int or callable, optional\n",
" Line numbers to skip (0-indexed) or number of lines to skip (int)\n",
" at the start of the file.\n",
"\n",
" If callable, the callable function will be evaluated against the row\n",
" indices, returning True if the row should be skipped and False otherwise.\n",
" An example of a valid callable argument would be ``lambda x: x in [0, 2]``.\n",
"skipfooter : int, default 0\n",
" Number of lines at bottom of file to skip (Unsupported with engine='c').\n",
"nrows : int, optional\n",
" Number of rows of file to read. Useful for reading pieces of large files.\n",
"na_values : scalar, str, list-like, or dict, optional\n",
" Additional strings to recognize as NA/NaN. If dict passed, specific\n",
" per-column NA values. By default the following values are interpreted as\n",
" NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',\n",
" '1.#IND', '1.#QNAN', '', 'N/A', 'NA', 'NULL', 'NaN', 'n/a',\n",
" 'nan', 'null'.\n",
"keep_default_na : bool, default True\n",
" Whether or not to include the default NaN values when parsing the data.\n",
" Depending on whether `na_values` is passed in, the behavior is as follows:\n",
"\n",
" * If `keep_default_na` is True, and `na_values` are specified, `na_values`\n",
" is appended to the default NaN values used for parsing.\n",
" * If `keep_default_na` is True, and `na_values` are not specified, only\n",
" the default NaN values are used for parsing.\n",
" * If `keep_default_na` is False, and `na_values` are specified, only\n",
" the NaN values specified `na_values` are used for parsing.\n",
" * If `keep_default_na` is False, and `na_values` are not specified, no\n",
" strings will be parsed as NaN.\n",
"\n",
" Note that if `na_filter` is passed in as False, the `keep_default_na` and\n",
" `na_values` parameters will be ignored.\n",
"na_filter : bool, default True\n",
" Detect missing value markers (empty strings and the value of na_values). In\n",
" data without any NAs, passing na_filter=False can improve the performance\n",
" of reading a large file.\n",
"verbose : bool, default False\n",
" Indicate number of NA values placed in non-numeric columns.\n",
"skip_blank_lines : bool, default True\n",
" If True, skip over blank lines rather than interpreting as NaN values.\n",
"parse_dates : bool or list of int or names or list of lists or dict, default False\n",
" The behavior is as follows:\n",
"\n",
" * boolean. If True -> try parsing the index.\n",
" * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3\n",
" each as a separate date column.\n",
" * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as\n",
" a single date column.\n",
" * dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call\n",
" result 'foo'\n",
"\n",
" If a column or index cannot be represented as an array of datetimes,\n",
" say because of an unparseable value or a mixture of timezones, the column\n",
" or index will be returned unaltered as an object data type. For\n",
" non-standard datetime parsing, use ``pd.to_datetime`` after\n",
" ``pd.read_csv``. To parse an index or column with a mixture of timezones,\n",
" specify ``date_parser`` to be a partially-applied\n",
" :func:`pandas.to_datetime` with ``utc=True``. See\n",
" :ref:`io.csv.mixed_timezones` for more.\n",
"\n",
" Note: A fast-path exists for iso8601-formatted dates.\n",
"infer_datetime_format : bool, default False\n",
" If True and `parse_dates` is enabled, pandas will attempt to infer the\n",
" format of the datetime strings in the columns, and if it can be inferred,\n",
" switch to a faster method of parsing them. In some cases this can increase\n",
" the parsing speed by 5-10x.\n",
"keep_date_col : bool, default False\n",
" If True and `parse_dates` specifies combining multiple columns then\n",
" keep the original columns.\n",
"date_parser : function, optional\n",
" Function to use for converting a sequence of string columns to an array of\n",
" datetime instances. The default uses ``dateutil.parser.parser`` to do the\n",
" conversion. Pandas will try to call `date_parser` in three different ways,\n",
" advancing to the next if an exception occurs: 1) Pass one or more arrays\n",
" (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the\n",
" string values from the columns defined by `parse_dates` into a single array\n",
" and pass that; and 3) call `date_parser` once for each row using one or\n",
" more strings (corresponding to the columns defined by `parse_dates`) as\n",
" arguments.\n",
"dayfirst : bool, default False\n",
" DD/MM format dates, international and European format.\n",
"cache_dates : bool, default True\n",
" If True, use a cache of unique, converted dates to apply the datetime\n",
" conversion. May produce significant speed-up when parsing duplicate\n",
" date strings, especially ones with timezone offsets.\n",
"\n",
" .. versionadded:: 0.25.0\n",
"iterator : bool, default False\n",
" Return TextFileReader object for iteration or getting chunks with\n",
" ``get_chunk()``.\n",
"chunksize : int, optional\n",
" Return TextFileReader object for iteration.\n",
" See the `IO Tools docs\n",
" `_\n",
" for more information on ``iterator`` and ``chunksize``.\n",
"compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'\n",
" For on-the-fly decompression of on-disk data. If 'infer' and\n",
" `filepath_or_buffer` is path-like, then detect compression from the\n",
" following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no\n",
" decompression). If using 'zip', the ZIP file must contain only one data\n",
" file to be read in. Set to None for no decompression.\n",
"thousands : str, optional\n",
" Thousands separator.\n",
"decimal : str, default '.'\n",
" Character to recognize as decimal point (e.g. use ',' for European data).\n",
"lineterminator : str (length 1), optional\n",
" Character to break file into lines. Only valid with C parser.\n",
"quotechar : str (length 1), optional\n",
" The character used to denote the start and end of a quoted item. Quoted\n",
" items can include the delimiter and it will be ignored.\n",
"quoting : int or csv.QUOTE_* instance, default 0\n",
" Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of\n",
" QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).\n",
"doublequote : bool, default ``True``\n",
" When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate\n",
" whether or not to interpret two consecutive quotechar elements INSIDE a\n",
" field as a single ``quotechar`` element.\n",
"escapechar : str (length 1), optional\n",
" One-character string used to escape other characters.\n",
"comment : str, optional\n",
" Indicates remainder of line should not be parsed. If found at the beginning\n",
" of a line, the line will be ignored altogether. This parameter must be a\n",
" single character. Like empty lines (as long as ``skip_blank_lines=True``),\n",
" fully commented lines are ignored by the parameter `header` but not by\n",
" `skiprows`. For example, if ``comment='#'``, parsing\n",
" ``#empty\\na,b,c\\n1,2,3`` with ``header=0`` will result in 'a,b,c' being\n",
" treated as the header.\n",
"encoding : str, optional\n",
" Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python\n",
" standard encodings\n",
" `_ .\n",
"dialect : str or csv.Dialect, optional\n",
" If provided, this parameter will override values (default or not) for the\n",
" following parameters: `delimiter`, `doublequote`, `escapechar`,\n",
" `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to\n",
" override values, a ParserWarning will be issued. See csv.Dialect\n",
" documentation for more details.\n",
"error_bad_lines : bool, default True\n",
" Lines with too many fields (e.g. a csv line with too many commas) will by\n",
" default cause an exception to be raised, and no DataFrame will be returned.\n",
" If False, then these \"bad lines\" will dropped from the DataFrame that is\n",
" returned.\n",
"warn_bad_lines : bool, default True\n",
" If error_bad_lines is False, and warn_bad_lines is True, a warning for each\n",
" \"bad line\" will be output.\n",
"delim_whitespace : bool, default False\n",
" Specifies whether or not whitespace (e.g. ``' '`` or ``' '``) will be\n",
" used as the sep. Equivalent to setting ``sep='\\s+'``. If this option\n",
" is set to True, nothing should be passed in for the ``delimiter``\n",
" parameter.\n",
"low_memory : bool, default True\n",
" Internally process the file in chunks, resulting in lower memory use\n",
" while parsing, but possibly mixed type inference. To ensure no mixed\n",
" types either set False, or specify the type with the `dtype` parameter.\n",
" Note that the entire file is read into a single DataFrame regardless,\n",
" use the `chunksize` or `iterator` parameter to return the data in chunks.\n",
" (Only valid with C parser).\n",
"memory_map : bool, default False\n",
" If a filepath is provided for `filepath_or_buffer`, map the file object\n",
" directly onto memory and access the data directly from there. Using this\n",
" option can improve performance because there is no longer any I/O overhead.\n",
"float_precision : str, optional\n",
" Specifies which converter the C engine should use for floating-point\n",
" values. The options are `None` for the ordinary converter,\n",
" `high` for the high-precision converter, and `round_trip` for the\n",
" round-trip converter.\n",
"\n",
"Returns\n",
"-------\n",
"DataFrame or TextParser\n",
" A comma-separated values (csv) file is returned as two-dimensional\n",
" data structure with labeled axes.\n",
"\n",
"See Also\n",
"--------\n",
"DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.\n",
"read_csv : Read a comma-separated values (csv) file into DataFrame.\n",
"read_fwf : Read a table of fixed-width formatted lines into DataFrame.\n",
"\n",
"Examples\n",
"--------\n",
">>> pd.read_csv('data.csv') # doctest: +SKIP\n",
"\u001b[0;31mFile:\u001b[0m ~/miniconda3/envs/pangeo/lib/python3.8/site-packages/pandas/io/parsers.py\n",
"\u001b[0;31mType:\u001b[0m function\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"pd.read_csv?"
]
},
{
"cell_type": "markdown",
"id": "powerful-chain",
"metadata": {},
"source": [
"For more information, see the [documentation](https://pandas.pydata.org/)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "charitable-philippines",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "pangeo",
"language": "python",
"name": "pangeo"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}